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Abstract. We calculate the CP violating effects in the top quark semi-leptonic three body decays induced
by the supersymmetric CP -odd phase of the top squark trilinear soft breaking term arg(At). The light top
squark mass is assumed to be close to the top quark mass, mt̃ ∼ mt. The CP conserving phase is provided
by the χ+ and χ0 cut. We find that the partial rate asymmetry is on the 0.1% level. In the most favorable
parameter region the decay rate asymmetry can reach up to 0.55%.

1 Introduction

Top quark physics is sensitive to new physics, which may
exist near the electro-weak scale, due to its large mass.
Experimental and theoretical research of CP violation in
the top sector is one way to reveal new physics. To study
the top quark CP odd effects have as their own advan-
tage that the uncertainties coming from hardron matrix
elements can be avoided.

If mt is near to mnewphysics, the CP asymmetry effects
in top quark decays can be induced by new particles. Un-
til now a lot of work on CP asymmetry effects in the top
quark decays[1] has been done within the supersymmetric
model. Most of this work has made the assumption that
the mass of the light top squark is much smaller than that
of the top quark. Grzadkowski and Keung calculated the
CP violating effects induced by the t̃b̃g̃ loop [2]. This con-
tribution requires the condition mt̃ +mg̃ < mt, which has
already been excluded. Christova and Fabbrichesi com-
puted the effects induced by the t̃b̃χ0 loop [3], which re-
quires mt̃ + mχ0 < mt. Bar–Shalom et al. gave the CP
asymmetry in top quark decays induced by t̃χ+χ0. It is at
best 0.3% when the light stop mass is between ∼ 50 GeV
and ∼ 70 GeV [4].

However, if the light top squark mass mt̃1
is approx-

imately as heavy as the top quark, the CP asymmetry
effect in top quark two body decays induced by supersym-
metric CP odd phases will not be observable, because the
top squark cannot run on shell to produce the necessary
absorptive cut. In this work we considered this case un-
der the assumption that the light chargino is much lighter
than mt̃1

. Under this condition, the χ0 (which is always
assumed to be the LSP) and χ+ can provide the neces-
sary absorptive cut in top quark three body decays, such
as in the process t → bνττ considered in the present work.
These two particles can be on shell in the top quark three
body decay loop diagrams when the invariant mass of the

lepton pair is sufficiently large. To our knowledge, a study
on CP asymmetry in the top quark three body decays in
the supersymmetric model misses in the literature, though
such effects have been studied in Weinberg’s three Higgs
doublets model [5].

In the present work the mass of the light top squark
is assumed to be above 140 GeV. Taking into account the
direct experimental limit on super particles [6] and the
indirect limit coming from the neutron EDM limit [7],
we take µ to be real and to be the lightest neutralino
to be above 30 GeV and the lighter chargino to be above
65 GeV. The large mass of the stop leads to relatively small
CP violating effects. Nevertheless, the CP odd effects can
reach up to 0.55% in the most favorable parameter space.

This paper is organized as follows: in Sect. 2 we ana-
lyze the possible new CP violating sources in MSSM and
present our simplifying assumptions in performing the cal-
culation. In Sect. 3 we sketch the main steps of our calcu-
lations. In Sect. 4 we present our numerical results and in
Sects. 5 and 6 we discuss and summarize our results. The
mass matrices for charginos, neutralinos and squarks are
given in Appendix A. In Appendix B we give the relevant
pieces of the Lagrangian for our calculations, and some
analytic results are presented in Appendix C.

2 CP violating phases
in the low energy supersymmetric model

The most general form of the low energy Lagrangian of
MSSM [8,9], which is SU(3)×SU(2)×U(1) gauge invari-
ant and does not violate the SM conservation laws, can be
written as

L = kinetic terms +
∫

d2θW + Lsoft. (1)
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The superpotential W is given by
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where ε12 = −1. The hat “ˆ” indicates that the corre-
sponding letter represents a superfield. The capital indices
I, J denote generations. i, j refer to the components of a
SU(2) doublet. The l, d, u are the Yukawa coupling ma-
trices. The soft breaking terms can be divided into three
pieces,

Lsoft = Lscalar + Lgaugino + Ltrilinear. (3)

These are the scalar particle mass terms, gaugino mass
terms and the trilinear soft breaking terms, respectively.
They are given by
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where m1,m2,m3 are the U(1), SU(2) and SU(3) gaugi-
nos masses, respectively. Fields in Lscalar and Ltrilinear are
scalar components of the corresponding superfields.

In general, all the coupling parameters in the above ex-
pressions except those of the diagonal terms in Lscalar may
be complex which may be the CP violating sources. How-
ever, not all of them are physical and, even the physical
parameters are too many to be disposed of. In actual cal-
culations, simplifying assumptions must be made. We get
the physical CP violating phases by the following steps.

First, we take the GUT assumption that the mis are
universal at the GUT scale and can be set real by a phase
rotation [10]. Thus, the mis are real at any scale. Second,
we adjust the global phase between the two Higgs super-
fields so that µs is real. This adjustment makes the two
vacuum expectation values of the neutral Higgs fields v1,
v2 real [9]. After the adjustment the phases of the two
Higgs superfields are fixed and µ is complex in general.
Third, lIJ , dIJ , and uIJ in the superpotential are diago-
nalized and the unphysical phases are absorbed by quark
superfields similar to that done in the standard model.
This leaves a CP violating phase δKM in the kinetic terms
after the superfields are redefined. Fourth, to suppress the
FCNC process in the SUSY extension of SM, as an ap-
proximation we require that all the matrices in Lsoft, m2

L,
m2

R, m2
Q, m2

U , m2
D, AU , AD and AE are flavor diagonal in

t b

W

� �
�

Fig. 1. The tree-level Feynman diagram for the process t →
bντ τ̄

the basis where lIJ , dIJ and uIJ are diagonal (flavor align-
ment [11]). Then the Hermitian matrices in Lscalar are now
all real. The phases of all squarks are fixed after the third
step. Therefore, ADs, AU s are generally complex. In con-
clusion, δKM, arg(µ), arg(AD)s and arg(AU )s are the CP
violating phases in the low energy supersymmetric model
under our assumptions.

arg(µ) cannot be larger than the order ∼ O(10−2 −
10−3) by the constraint from the experimental limit of the
neutron EDM [7]. In our calculation, we always take µ to
be real and thus no CP violating effects are induced by
µ. The CP violating effects induced by AD,U are greatly
suppressed because they are proportional to the masses
of the corresponding quarks which can be neglected com-
pared with the squark mass parameters in Lscalar except
that induced by At which is associated with the top quark
(see the form of squark mass matrices in (A.8) and (A.9) in
Appendix A). Thus, arg(At) is the only new CP violating
source in our calculation.

After the interaction terms in the potential are diago-
nalized, the MSSM Lagrangian will be expressed by mass
eigenstates instead of gauge eigenstates. The CP violat-
ing phases are then transferred to the gauge interaction
vertices (see Appendix B for related Lagrangian pieces).
This is reflected by mixing matrices in the interaction ver-
tices. The mixing matrices Z+,Z−,ZN which diagonalize
charginos and neutralinos are real if µ is taken real. The
mixing matrices Zt for the top squark is in general com-
plex due to the complexity of At. This implies that the CP
violating effects come from arg(At). The mixing matrices
will be discussed in detail in Appendix A.

3 Calculation

We now discuss the CP violating effects in the process
t → bντ τ̄ (as depicted in Fig. 1) within the framework
of MSSM. First denote the invariant mass of τ̄ and ντ

as (q2)1/2, where q = pντ + pτ̄ . pντ and pτ̄ are the four-
momenta of ντ and τ̄ . We calculated the CP asymmetry
when q2 > m2

W . This condition opens a new window so
that the χ+ and χ0 cut may give an absorptive part to the
amplitudes for the loop diagrams as depicted in Fig. 2.

Several points should be indicated at the moment.
(1) There should be a minus sign in front of the ampli-

tudes for box diagrams relative to that for triangle
diagrams. This is due to one more commutation of the
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Fig. 2a–f. The SUSY induced CP violating one-loop diagrams
for the process t → bντ τ̄

fermion operators in the Wick contraction procedure
for writing down the S-matrix elements for these two
diagrams [12].

(2) There are two kinds of box diagrams. If by convention
we assign the “fermion number” +1 to a quark or a
lepton and −1 to their antiparticles and let the arrow
denotes the flow of the “fermion number” then there
are clashes of arrows in Figs. 2a and c. This is due to
the Majorana nature of χ0 and χ+ [8].

(3) We have assumed that the absorptive part of the am-
plitudes for the loop diagrams are induced by the χ0

χ cut [13]. t̃ or τ̃ can also be on shell and give new
contribution to the absorptive part under the condi-
tion mt̃ + mχ0 < mt or mχ > mτ̃ , respectively. We
excluded these two cases for simplicity for the fol-
lowing reasons. Under our assumption about the stop
mass, mt̃ + mχ0 < mt can be satisfied only in a very
narrow SUSY parameter region, which is simply ex-
cluded in our calculation. mχ > mτ̃ means the CP

odd effect will appear as (q2)1/2 > 160 GeV (we take
mν̃ = 130 GeV) which has too small a branching ratio
and can be ignored.

Two quantities are defined to represent the CP asym-
metry effects,

At,e
CP =

Γ − Γ̄

Γ + Γ̄

=

∫ m2
t

Lt,e
dq2 dΓ (q2)

dq2 − ∫ m2
t

Lt,e
dq2 dΓ̄ (q2)

dq2∫ m2
t

Lt,e
dq2 dΓ (q2)

dq2 +
∫ m2

t

Lt,e
dq2 dΓ̄ (q2)

dq2

, (7)

Lt = (mχ +mχ0)2, (8)

Le = (100 GeV)2, (9)

where dΓ (q2)
dq2 and dΓ̄ (q2)

dq2 are the differential widths of the
top quark and top anti-quark. At

CP reflects the CP odd
effect appearing when the invariant mass (q2)1/2 is just
above the threshold. Ae

CP reflects the CP asymmetry ef-
fect when we measure the decay events with fixed Le,
which is taken to be (100 GeV)2 in this work. The as-
sumption is due to the fact that the values of mχ+ ,mχ0

are not known at present.
We have only considered the contribution to the de-

nominator in (7) from the tree-level diagrams which gives
Γ = Γ̄ . The numerator comes from the interference of the
one-loop diagrams with the tree-level diagram, as

∆Γ = Γ − Γ̄ = ∆|M |2 · phase space
= (|M |2 − |M̄ |2) · phase space. (10)

The three body final state “phase space” is

phase space =
1

2mt

∫
d3pb

(2π)32Eb

d3pτ̄

(2π)32Eτ̄

d3pντ

(2π)32Eντ

·(2π)4δ(pt − pb − pτ̄ − pντ ). (11)

The above expression multiplied by a δ((pτ̄ + pντ
)2 − q2)

gives the phase space for fixed q2. M , M̄ are the am-
plitudes for the process t → bντ τ̄ and its CP conjugate
process t̄ → b̄ν̄ττ , respectively.

M can be expressed as

M = aA1 +
∑

i

biAi
2, (12)

where the two terms come from tree-level and one-loop di-
agrams respectively. ai, bi contain the CP violating phases
both from the KM matrix element Vtb and from the stop
mixing matrix elements Zij

t . Ai
2 develops an absorptive

part for q2 beyond the threshold. M̄ can be expressed as

M̄ = a∗A1 +
∑

i

bi
∗
Ai

2. (13)

So, we have

∆|M |2 = −4
∑

i

Im(a∗bi)Im(Ai
2A

∗
1). (14)

ImAi
2 is given by the Cutkosky rule,

∑
i

biImAi
2 =

1
2

∫
dΦ Â(t → bχ+χ0)

×Â(χ+χ0 → τ̄ ντ ), (15)
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where

dΦ =
∫

d3k

(2π)32Eχ0

d3k′

(2π)32Eχ+

·(2π)4δ(pt − pb − k − k′) (16)

is the phase space of χ0, χ+ as they are on shell. k, k′ are
the four-momenta of χ0 and χ+, respectively.

After summing up all spins of external particles we
get, e.g., the interference term of Fig. 2a and the tree-level
graph of the form

1
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aFi
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where we have introduced X i
as to represent quantities like

Im(a∗bi) in (14) arising from the SUSY couplings and the
corresponding Fis to represent quantities like Im(A2A

∗
1)

which are Lorentz invariant functions of the four-momenta
of χ0, b, τ̄ and ντ . P1 and P2 are denominators of the
two boson propagators in the loop graphs. Note that the
SM phase from Vtb is cancelled in the interference term
between the amplitude for the tree diagram and those for
the one-loop diagrams.

We get the analytic expressions for 1
2

∑
spin∆|M |2 by

integrating the phase space of χ0 and χ+ in ~q = 0 system.
The analytic results are given in Appendix C. By express-
ing the formulae in Lorentz invariant form, we translate
the formulae to the top quark rest system. In this sys-
tem the final state three body phase space integration is
implemented numerically.

All the X is for each graphs are proportional to ξj
t (for

detailed expressions of X is, see Appendix C), so we can
write

ACP = ξ1t · fCP , (18)

where

ξj
t = ImZ1j

t

∗
Z2j

t =
(−1)j

2
sin(2θt) sinφt; (19)

θt and φt are given in (A.13) and (A.9) of Appendix A.
In terms of parameters in the top squark mass matrix we
get

ξj
t =

(−1)j−1mt · ImAt√
∆

. (20)

From the expression of ∆ in (A.13) of Appendix A we
can see that |ξi

t| can be as large as 1
2 when the following

conditions are satisfied at the same time: Lf = Rf , µ = 0
and At is purely imaginary. This is certainly difficult to
reach.
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Fig. 3. The CP asymmetry ACP plotted as a function of
arg(At) for tan β = 1.2, m2 = 150GeV, µ = −40GeV,
M = 200GeV, c = 0.2. When mt̃1

= 150GeV, ACP reaches
its maximum

4 Numerical results

We now turn to our main numerical results. The calcu-
lation is based on the low energy MSSM scenario whose
parameter freedom has been greatly reduced as described
in Sect. 2. Another simplifying assumption taken in our
calculation is the universal relationship between the gaug-
ino masses, i.e., m1 = 5

3m2 tan2 θW, where θW is the weak
mixing angle [14]. We write the parameters m2

t̃L
, m2

t̃R
in

the top squark mass matrix as

m2
t̃L = M2 − cm2

t , m
2
t̃R

= M2 − 2cm2
t (21)

where M is an arbitrary mass scale for the scalar particles.
Neglecting the masses of τ and quarks except the top

quark we are left with ten SUSY parameters, i.e., µ, m2,
tanβ, c, M , |At|, arg(At), mτ̃L, mτ̃R and mν̃ . We take
mτ̃L = mτ̃R = mν̃ = 130 GeV to which the results are
insensitive, and always take |At| = M , c = 0.1 ∼ 1. The
other free SUSY parameters are restricted by the exper-
imental limits on the masses of super particles [6] and
our assumption mt̃1

≥ 140 GeV. In particular, we asume
that mχ0

1
, the mass of the lightest neutralino, is above

30 GeV and mχ+
1
, the mass of the light chargino, is above

65 GeV. Another limit for the parameter space is adopted
for simplicity in that we require mχ0

1
+mχ+

1
> 100 GeV

and mχ0
1

+ mt̃1
> mt. The SM parameters are taken as

mt = 175 GeV, |Vtb|2 = 1, α = 1/128, mW = 80.33 GeV ,
sin2 θW = 0.232 and mb = mτ = 0.

A consequence of the above scenario, especially that
arg(µ)=0 and mb = 0 is that Figs. 2c, d and f do not ac-
quire any CP violating phase. So only Figs. 2a, b and e are
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Fig. 4. The quantity fCP defined in (18) plotted as a function
of arg(At). All the parameters are the same as in Fig. 3

considered. It is found numerically that more than 90% of
the contributions to ACP come from the triangle diagram
Fig. 2e. Because of this, the results are not sensitive to the
values of mτ̃ and mν̃ .

We have studied the CP asymmetry, ACP , as a func-
tion of the SUSY parameters arg(At), µ, tanβ, m2 and
mt̃1

. In all the figures there are two curves for the same
values of the fixed parameters of which the curve giving
larger ACP represents At

CP while that giving a smaller
value represents Ae

CP .
In Fig. 3 we show the ACP as a function of arg(At).

We can see that ACP is approximately a sine function of
arg(At) as can be seen in (18) and (19). fCP defined in (18)
is plotted in Fig. 4. We see that fCP is just like a parabola.
As a result ACP does not reach its maximum when At

is purely imaginary; rather, it is maximal at arg(At) ≈
±0.7π. fCP depends on arg(At) through the top squark
mass matrix (see Appendix A).

In Figs. 5–7, we plotted ACP as a function of the Higgs
mass parameter µ for tanβ = 1.2, 5, 15, respectively, for
different values of m2. The global feature of the three fig-
ures is that ACP decreases dramatically as |µ| increases.
Notice that in the high tanβ scenario ACP becomes quite
insensitive to the sign of µ. ACP is almost symmetric
about |µ| for tanβ = 15. However, as tanβ = 1.2 ACP is
not small only for negative µ. Another feature of the fig-
ures is that for fixed tanβ and µ, Ae

CP decreases whereas
At

CP increases as m2 becomes larger. The reason evidently
is that the threshold varies with m2.

The dependence of ACP on tanβ is plotted in Fig. 8
and Fig. 9, for several values of m2 and for µ = −70 GeV
and µ = −50 GeV, respectively. An interesting feature of
these two figures is that At

CP decreases as tanβ increases
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Fig. 5. The CP asymmetry ACP plotted as a function of SUSY
parameter µ, for several values of m2, for tan β = 1.2, M =
160GeV, c = 0.15, arg(At) = 0.5π
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Fig. 6. The CP asymmetry ACP plotted as a function of the
SUSY parameter µ, for several values of m2, tan β = 5. All the
other parameters are the same as that of Fig. 3

whereas Ae
CP increases. This is because a low tanβ gives

a strong Yukawa coupling for the top quark so that we get
a large At

CP . However, a large tanβ makes the threshold
lower and thus elevates Ae

CP . As tanβ > 4, we can see
from Fig. 8 that At

CP is almost insensitive to tanβ.
The dependence of ACP on m2 is plotted in Fig. 10, for

several values of tanβ. We can see that the major part of
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Fig. 7. The CP asymmetry ACP plotted as a function of the
SUSY parameter µ, for several values of m2, tan β = 15. All
the other parameters are the same as that of Fig. 3

the curve Ae
CP falls into the region between 0.1%–0.2%.

For tanβ = 2, ACP rises as m2 increases whereas for a
large tanβ ACP slightly drops as m2 increases.

Finally, we give the dependence of ACP on the top
squark mass in Fig. 11 for µ = −50 GeV. It is found that
ACP depends essentially only on mt̃1

, not separately on
M and c. ACP decreases with mt̃, just as what has been
expected. When mt̃1

is around 140 GeV ACP can reach up
to 0.5%.

In summary, Ae
CP is around the 0.1% level in the major

part of the parameter space that we have discussed. In a
very narrow region of the parameter space, Ae

CP can reach
the 0.5% level.

5 Discussion

We would like to point out two points in this section.

(1) The branching ratio for top quark decay drops rapidly
when the W boson is off shell. For (q2)1/2 > 100 GeV
the branching ratio for bνττ final state is only about

1
1000 according to our calculation. However, we have al-
ready mentioned that the contributions to ACP come
mainly from the triangle diagrams in Fig. 2, so ACP

for different final states have the same sign and ap-
proximately the same size. Therefore, we can make
a combining analysis for the data of the three body
CP asymmetries for different three fermion final states
(τ, ντ ), (µ, νµ), (e, νe), and all allowed three quark de-
cays . The total branching ratio for top quark three
body decays for (q2)1/2 > 100 GeV can reach up to
about 1/100. However, there are CP asymmetries of
the order (αs/π)2 for three quark decays coming from
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Fig. 8. The CP asymmetry ACP plotted as a function of tan β,
for several values of m2, µ = −70GeV, M = 160GeV, c = 0.15,
arg(At) = 0.5π

gluon and gluino corrections, which may be of the same
order as considered here. This needs to be studied fur-
ther if one attempts to quantitatively compare the the-
oretical and experimental CP asymmetries for three
quark decays.

(2) The total width of top and anti-top quark are equal,
Γ = Γ̄ , due to the CPT theorem. The following rela-
tion holds:(

Γ (t → bf f̄ ′) − Γ̄ (t̄ → b̄f̄ f ′)
)
χ0χ+

= − (
Γ (t → bχ0χ+) − Γ̄ (t̄ → b̄χ0χ−)

)
ff̄ ′ , (22)

where ff̄ ′ represent all the W boson decay products.
This relation holds under the constraint q2 > L (L ≤
(mχ0 +mχ)2) on both sides of (22) as in the definition
of ACP in (7), for when the constraint is not satis-
fied both sides of (22) vanish. This relation can easily
be seen from Figs. 1, 2 and 12. The four interference
terms contributing to the r.h.s. of (22) between the
two triangle diagrams and the two tree-level diagrams
in Fig. 12 correspond to the interference terms between
the four box diagrams in Fig. 2 and the tree-level dia-
gram in Fig. 1. The other two interference terms of the
fermion loop diagram with the two tree-level graphs in
Fig. 12 correspond to those of the triangle diagrams in
Fig. 2 with the tree-level diagrams in Fig. 1. The rela-
tive minus sign on the r.h.s. of (22) can be explained as
follows. We must add a minus sign to the amplitude for
Fig. 12e due to the closed fermion loop. Such a minus
sign is absent in the corresponding amplitude in Fig. 2
. On the contrary, there is a minus sign in front of the
box diagram in Fig. 2. No such minus sign is present in
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Fig. 9. The CP asymmetry ACP plotted as a function of tan β,
for several values of m2, µ = −50GeV, M = 160GeV, c = 0.15,
arg(At) = 0.5π

Fig. 12c, and d. Thus, the CPT relation (22) manifests
itself through the Cutkosky rule in (15).

6 Summary

In this work we considered the CP asymmetries induced
by MSSM new phases in the semi-leptonic three body de-
cays of the top quark under the assumption that the top
squark is so heavy that no CP odd effects are observable
in top quark two body decays in one-loop level. In our
calculation ACP can reach up to 0.55% in the most fa-
vorable case. Considering the small total branching ratio
for (q2)1/2 > 100 GeV which is about 1/100 for all three
body decays it is really hard to detect such small effects
experimentally.

However, several constraints in our calculations can
be relaxed. For example, the gaugino mass parameters
m1 and m2 can be complex and give new CP violating
sources if we do not make the universal assumption about
the gauginos masses in GUT scale. Another possible CP
source is from the Higgs mass parameter µ. According to
recent studies on the neutron EDM, cancellation among
different contributions can take place so that µ can have
a large imaginary part even when super particles are in
the O(100 GeV) level [15]. If this is the case, a complex
µ can introduce additional CP asymmetries in top quark
decays. And if we relax the constraint on the mt̃1

to be
slightly above 100 GeV, the mt̃1

and mχ0 cut can also give
a contribution to ACP in three body decays. Another im-
provement may come from the branching ratio enhance-
ment. The direct experimental constraint on mχ0 +mχ+ is
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Fig. 10. The CP asymmetry ACP plotted as a function of m2

for M = 160GeV, c = 0.15, arg(At) = 0.5π, µ = −50GeV for
tan β = 2 and µ = −60GeV for tan β = 5, 10

even below mW today [6]. As (q2)1/2 decreases the branch-
ing ratio for top quark three body decays increases rapidly
(e.g., the branching ratio for all three body decays is about
1/35 for (q2)1/2 > 90 GeV). So, if mχ0 +mχ+ is not much
heavier than mW, the ACP in the three body decays is
hopefully detectable in the LHC which may be able to
produce 107–108 tt̄ pairs.

On the contrary, if mχ+ and mt̃ are both heavier than,
e.g., 140 GeV, all the windows for CP asymmetries in-
duced by super particles will be shut up. CP odd effects
in top quark decays induced by MSSM particles can only
exist beyond one-loop order. This will be beyond experi-
mental possibilities in the near future.

A Appendix A

There are different conventions for super particles mass
matrices adopted in the literature so that it is very easy
to make sign errors. To avoid sign errors we once again
derived the MSSM Lagrangian. For most part we adopted
the conventions described by Rosiek [9]. The original
MSSM Lagrangian is given by (1)—(6) of which all fields
are gauge eigenstates. We should point out that the ε12 =
−1 convention will give an extra minus sign to the param-
eter µ compared to those adopting the convention ε12 = 1
(if a universal relation for the gauginos is taken only the
relative sign between the gauginos and µ is significant). To
get the physical spectrum of the particles one should carry
out the standard procedure of gauge symmetry breaking.
After SSB super-particles will mix and form different mass
eigenstates.
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Mχ0 =




m1 0 −MZ cos β sin θW MZ sin β sin θW

0 m2 MZ cos β cos θW −MZ sin β cos θW

−MZ cos β sin θW MZ cos β cos θW 0 −µ
MZ sin β sin θW −MZ sin β cos θW −µ 0


 , (A.5)
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Fig. 11. The CP asymmetry ACP plotted as a function of
the mass of the light top squark, for different values of m2,
tan β = 2.5, µ = −50GeV, arg(At) = 0.5π

The charged Higgsinos and charged winos mix and give
two mass eigenstates named charginos. The mass matrix
of the charginos is

Mχ =

[
m2

√
2MW sinβ

√
2MW cosβ µ

]
. (A.1)

The mixing matrices satisfy

(Z−)TMχZ
+ = diag (mχ1 ,mχ2) , (A.2)

and is defined by(−iλ−
ψ2

H1

)
= Z−

(
ϕ−

1
ϕ−

2

)
, (A.3)

(−iλ+

ψ1
H2

)
= Z+

(
ϕ+

1
ϕ+

2

)
. (A.4)

In the above equations λ± = 1√
2
(λ1

W ∓ iλ2
W) where λ1,2

W
are the first and second components of the wino as in
(5). ψ2

H1
is the first (or up) fermion component of the

second Higgs super field doublet. The fields on the left
hand side of the above equations are gauge eigenstates
and the fields on the right hand side are mass eigenstates.
The four-component Dirac spinor charginos are defined by
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a b
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Fig. 12a–e. The tree-level and one-loop Feynman diagrams
for the process t → bχ0χ+

χ+
i =

[
ϕ+

i

ϕ̄−
i

]
. The mass term which will appear in the final

form of the Lagrangian is −mχi
χ̄iχi.

The third component of the wino, bino and neutral
Higgsinos combine to give four Majarana neutralinos. The
mass matrix for the neutralinos is (see (A.5) on top of the
page) which is diagonalized by

ZT
NMχ0ZN = diag

(
mχ0

1
,mχ0

2
,mχ0

3
,mχ0

4

)
. (A.6)

ZN is defined by



−iλB

−iλ3
W

ψ1
H1

ψ2
H2


 = ZN



ϕ0

1
ϕ0

2
ϕ0

3
ϕ0

4


 , (A.7)

where λB is a bino. All fields on the left hand side of the
above equation are gauge eigenstates and those on the
right hand side are mass eigenstates. The four-component

Dirac spinor form for neutralinos is χ0
i =

[
ϕ0

i

ϕ̄0
i

]
. The mass

term in the final form of the Lagrangian of the neutralino
is −(1/2)mχ0

i
χ̄0

iχ
0
i .

Ignoring generation mixing, the mass eigenstates of the
squarks are obtained by mixing the left-handed and right-
handed eigenstates of squarks. Its mass matrix is

M2
f̃

=
[
Lf Cf

C∗
f Rf

]
(A.8)

Lf = m2
f + cos 2β(T3f −Qf sin2 θW)M2

Z +m2
f̃L
,
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Rf = m2
f + cos 2βQf sin2 θWM

2
Z +m2

f̃R
,

Cf = −mf (rfµ+A∗
f ) = |Cf |eiφf , (A.9)

where T3f is 1/2 for an up squark and −1/2 for a down
squark. Qf is the charge of the sparticle and rf is cotβ
for an up squark and tanβ for a down squark. m2

f̃L
, m2

f̃R
,

and Af are the corresponding diagonal elements of m2
Q,

m2
U (m2

D) and AU (AD) in Lsoft, respectively. The mixing
matrix satisfies

Z†
fM

2
f̃
Zf = diag

(
m2

f̃1
,m2

f̃2

)
. (A.10)

They are defined, e.g., for an up squark, by(
Q̃U

L

Ũ∗
R

)
= ZU

(
Ũ1

Ũ2

)
, (A.11)

where Q̃U
L is the up component of a left-handed up squark

doublet, ŨR is the right-handed up squark. Ũ1,2 are the
two mass eigenstates of the up squarks. The conjugate of
ŨR in (A.11) comes from adopting the charge conjugate
of a left hand fermion to represent its righted hand com-
ponent in the original MSSM Lagrangian. The final form
of the squark mass term in the Lagrangian is −m2

Ui
Ũi

∗
Ũi.

In particular, the mixing matrix for a top squark is given
by

Zt =
[

cos θteiφt/2 − sin θteiφt/2

sin θte−iφt/2 cos θte−iφt/2

]
, (A.12)

where φt is defined in (A.9) and

tan θt =
2|Ct|

Lt −Rt − √
∆
,

∆ = (Lt −Rt)2 + 4|Ct|2. (A.13)

The formulae for the down squark are similar to those for
the up squark. Note the definition of the mixing matrix
for a down squark given by [9] is the complex conjugate
of the mixing matrix given here.

B Appendix B

In this Appendix we list the relevant pieces of the SUSY
Lagrangian in terms of the mass eigenstates [9].

Ltt̃χ0 = gt̃∗i χ̄0
j [A

ijPL +BijPR]t+ H.C., (B.1)

Lbt̃χ = gt̃ib̄[CijPL +DijPR]V ∗
tbχ

c
j + H.C., (B.2)

Lbb̃χ0 = gb̃∗i χ̄0
j [E

ijPL + F IJPR]b+ H.C., (B.3)

Ltb̃χ = gb̃∗i χ̄j [GijPL +HijPR]V ∗
tbt+ H.C., (B.4)

Lττ̃χ0 = gτ̃∗
i χ̄

0
j [M

ijPL +N ijPR]τ + H.C., (B.5)

Lντ̃χ = gU ij τ̃∗
i χ̄jPLντ + H.C., (B.6)

Lτν̃χ = −gν̃∗
τ χ̄

c
i [Z

+
1iPL + lτZ−

2i

∗
PR] + H.C., (B.7)

Lνν̃χ0 = gWiν̃
∗
τ χ̄

0
iPLντ + H.C., (B.8)

Lχχ0W = gχ̄iν
µ[OijPL + V ijPR]χ0W+

µ + H.C., (B.9)

where{
Aij = −1√

2 cos θ
Z1i∗

t (
1
3Z

1j
N sin θ + Z2j

N cos θ) − utZ2i
t

∗
Z4j

N ,

Bij = 2
√

2 sin θ
3 cos θ Z2i

t
∗
Z1j

N

∗ − utZ1i
t

∗
Z4j

N

∗
,{

Cij = −dbZ1i
t Z

−
2j ,

Dij = −Z1i
t Z

+
1j

∗
+ utZ2i

t Z
+
2j

∗
,{

Eij = −g√
2 cos θ

Z1i
b ( 1

3Z
1j
N sin θ − Z2j

N cos θ) + dbZ2i
b Z

3j
N ,

F ij = −√
2 sin θ

3 cos θ Z2i
b Z

1j
N

∗
+ dbZ1i

b Z
3j
N

∗
,{

Gij = −Z1i
b Z

−
1j − dbZ2i

b Z
−
2j ,

Hij = utZ1i
b Z

+
2j

∗
,{

M ij = 1√
2 cos θ

Z1i
τ (Z1j

N sin θ + Z2j
N cos θ) + lτZ1i

τ Z
3j
N ,

N ij = −√
2 sin θ

cos θ Z2i
τ Z

1j
N

∗
+ lτZ1i

τ Z
3j
N

∗
,

U ij = −(Z1i
τ Z

−
1j + lτZ2i

τ Z
−
2j),

Wi = 1√
2 cos θ

(Z1i
N sin θ − Z2i

N cos θ),{
Oij = Z2i

NZ
+
1j

∗ − 1√
2
Z4j

N Z+
2j

∗
,

V ij = Z2i
N

∗
Z−

1j + 1√
2
Z3i

N
∗
Z−

2j ;
(B.10)

ut, db and lτ are the Yukawa coupling parameters for top,
bottom and τ respectively. They are given by

ut =
mt√

2mW sinβ
,

db =
−mb√

2mW cosβ
,

lτ =
−mτ√

2mW cosβ
. (B.11)

The vertex in (B.9) can be expressed as

Lχχ0W = −gχ̄c
jν

µ[Oij∗
PR + V ij∗

PL]χ0
iW

−
µ + H.C.,

(B.12)
which can be used to read off the Feynman rule directly
for Fig. 2e.

C Appendix C

In this section we give the formulae for the quantity (1/2)∑
∆|M |2 in (17) for Figs. 2c and e in detail. In the fol-

lowing formulae the X is are not separated out explicitly
as in (17) for convenience. All the formulae and variables
are given in the ~q = 0 system. The imaginary part of the
amplitude for Fig. 2c is

ImA(c) =
g4

2(2π)2

∫
d3k

2E
δ((q − k)2 −m2

χ)

·
{
ū(pν)Γν̃νχ0(k/+mχ0)Γt̃tχ0u(pt)ū(pb)

×Γt̃bχ(q/− k/−mχ)Γν̃τχv(pτ )
}/

{
[(pt − k)2 −m2

t̃ ][(pν − k)2 −m2
ν̃ ]

}
(C.1)

where k = (E,~k) is the four-momentum of χ0 and the
Γ s are the interaction vertex factors. The quantity (1/2)
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∑
spin∆|M |2 for Fig. 2c is

1
2

∑
∆|M |2(c)

=
g6

q2 −m2
W

|~k|
4π

√
q2

{
1
A′a

(2T + LE
′
ντ

|~k| cosα)

+
2ρb cosα
A′B′a

− a(S + LB
′
/4) + T + 1

2LE
′
ντ

|~k| cosα
A′a2

× log
1 + a

1 − a
+

1
A′B′ab

(−Ω + ρ(
1
a

+
1
b

cosα)) log
1 − b

1 + b

+
1

A′B′ (Σ − Ω

a
+

ρ

a2 )
1√
K

× log
1 − ab cosα+

√
K

1 − ab cosα− √
K

}
, (C.2)

where

ρ = −2X 2
a pν · pτ |~k|2|~pt|2,

Ω = (X 1
amχ0mt − 2X 2

a (pb · pν + k · q))pν · pτ |~k||~pt|
+4X 2

a pν · pτEEt|~k||~pt| − 2T
′
E

′
ντ
E −B

′
T,

Σ = 2X 1
amχ0mtpb · pνpν · pτ + (2X 2

a (pb · pν + k · q)
−X 1

amχ0mt)pν · pτEEt

+X 1
amχ0mtpν · pτk · q − 2X 2

a pν · pτ (EEt)2

+2S
′
E

′
ντ
E − LE

′
ντ
E2 +B

′
S + LB

′
/4

−X 2
a (pb · pνpt · pτ − pb · ptpν · pτ + pt · pνpb · pτ ),

K = a2 + b2 − a2b2 sin2 α− 2ab cosα. (C.3)

In the above formulae, E
′
ντ

is the energy of pν in the ~q = 0
system. α is the angle between the three-momenta of the
top quark and ντ in the ~q = 0 system. q2 is the invari-
ant mass square of the final state lepton pair. The other
quantities are defined as

A = m2
t +m2

χ0 −m2
t̃ ,

B = m2
χ0 −m2

ν̃ ,

A
′
= A− 2EEt,

B
′
= B − 2EE

′
ντ
,

a =
2|~k||~pt|
A′ ,

b =
2E

′
ντ

|~k|
B′ ,

L = X 2
a pt · pb,

S =
1
2
X 1

amχ0mtpb · q + X 2
a pb · pνpt · q

+X 2
a (pb · pτ − pt · pν)EEt + X 2

a pt · pνk · q,
T = X 2

a (pb · pτ − pt · pν)|~k||~pt|,
S

′
=

1
2
X 1

amχ0mt(pb · pτ − pb · pν) + X 2
a pb · pνpt · q

+X 2
a (pb · pτ + pt · pν)EEt − X 2

a pt · pνk · q,
T

′
= X 2

a (pb · pτ + pt · pν)|~k||~pt|. (C.4)

The non-Lorentz invariant four-vector components are ex-
pressed as

Eντ

′ =

√
q2

2
,

Et =
m2

t + q2

2
√
q2

,

|~pt| =
m2

t − q2

2
√
q2

,

E =
m2

t + q2

2mt
,

|~k| =
√
E2 −m2

χ0 ,

cosα =
m2

t + q2 − 4pt · pν

m2
t − q2

. (C.5)

The X 1,2
a are given by

X 1
a = −ImBi1Di1Z+

11W
1∗
,

X 2
a = −ImAi1Di1Z+

11W
1∗
. (C.6)

The elements of the mixing matrices in the above equa-
tions are taken in accordance to the fact that only mχ0

1

and mχ+
1

are considered in our calculations.
The corresponding formulae for Fig. 2e are

ImA(e)

=
g4

2
√

2(2π)2

∫
d3k

2E
δ((q − k)2 −m2

χ)
{
ū(pb)Γτ̃ bχ

×(k/− q/+mχ)γµΓχχ0WΓt̃tχ0u(pt)ū(pν)γµPLv(pτ )
}/

{
(q2 −m2

W)[(pt − k)2 −m2
t̃ ]

}
. (C.7)

The quantity (1/2)
∑

spin∆|M |2 for Fig. 2e is

1
2

∑
∆|M |2 =

−g6

(q2 −m2
W)2

1
2
√

2π
|~k|√
q2

1
A′a

{
2

(
Y − X

a

)

+
(
Z − Y

a
+
X

a2

)
log

1 + a

1 − a

}
, (C.8)

where

X = 2X 3
e [E

′
ντ

| ~Pt| cosα(pb · pτ − pt · pν) − | ~Pt|2pν · pτ

+
1
2
E

′
ντ

2
cos2 αpt · pb]|~k|2,

Y = Ω − S| ~Pt||~k| + TE
′
ντ

cosα,

Z = Σ + SEEt + T
′
EE

′
ντ

+H,

S = (2X 3
e pb · pν − X 4

emχ0mt)pν · pτ ,

T = 2X 2
emχmtpb · pν − X 4

emχ0mtpb · pt

−2X 3
e q · ptpb · pν ,

T
′
= 2X 2

emχmtpb · pν − X 4
emχ0mt(pb · pν − pb · pτ )

−2X 3
e pb · pν(pt · pν − pt · pτ ),
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Ω = 2X 3
e {−pb · pτEE

′
ντ

|~k|(| ~Pt| + Et cosα)

+pt · pνEE
′
τ |~k|(Et cosα− | ~Pt|) + (2EEt − k · q)

×| ~Pt||~k|pν · pτ − k · qE′
ντ

|~k| cosα0 · pν},
Σ = 2X 3

e {E2EtE
′
ντ

(pb · pτ + pt · pν) − EE
′
τk · qpt · pν

−(EEt − k · q)EEtpν · pτ − E
′
ντ

(E2 − 1
2
|~k|2)pt · pb},

H = X 4
emχ0mtpν · pτk · q + 2(X 1

emχ0mχpt · pτ

+X 4
emχ0mtpν · pτ )pb · pν − X 3

em
2
χ0(pb · pνpt · pτ

−pb · ptpν · pτ + pt · pνpb · pτ ). (C.9)

The parameters X i
es are given by

X 1
e = ImAi1Di1(−V 11∗

),

X 2
e = ImBi1Di1(−V 11∗

),

X 3
e = ImAi1Di1(−O11∗

),

X 4
e = ImBi1Di1(−O11∗

). (C.10)

From the above expressions and the expressions for A, and
D in (B.10) we can see that the X s are proportional to
ξi
t = Im(Z1i

t
∗
Z2i

t ) as pointed out in Sect. 3.
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